Papers
Topics
Authors
Recent
2000 character limit reached

Trust dynamics and user attitudes on recommendation errors: preliminary results

Published 11 Feb 2020 in cs.SI, cs.GT, cs.IR, and cs.MA | (2002.04302v1)

Abstract: Artificial Intelligence based systems may be used as digital nudging techniques that can steer or coerce users to make decisions not always aligned with their true interests. When such systems properly address the issues of Fairness, Accountability, Transparency, and Ethics, then the trust of the user in the system would just depend on the system's output. The aim of this paper is to propose a model for exploring how good and bad recommendations affect the overall trust in an idealized recommender system that issues recommendations over a resource with limited capacity. The impact of different users attitudes on trust dynamics is also considered. Using simulations, we ran a large set of experiments that allowed to observe that: 1) under certain circumstances, all the users ended accepting the recommendations; and 2) the user attitude (controlled by a single parameter balancing the gain/loss of trust after a good/bad recommendation) has a great impact in the trust dynamics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.