Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Iterative Neural Network Pruning, Reinitialization, and the Similarity of Masks (2001.05050v1)

Published 14 Jan 2020 in cs.LG and stat.ML

Abstract: We examine how recently documented, fundamental phenomena in deep learning models subject to pruning are affected by changes in the pruning procedure. Specifically, we analyze differences in the connectivity structure and learning dynamics of pruned models found through a set of common iterative pruning techniques, to address questions of uniqueness of trainable, high-sparsity sub-networks, and their dependence on the chosen pruning method. In convolutional layers, we document the emergence of structure induced by magnitude-based unstructured pruning in conjunction with weight rewinding that resembles the effects of structured pruning. We also show empirical evidence that weight stability can be automatically achieved through apposite pruning techniques.

Citations (17)

Summary

We haven't generated a summary for this paper yet.