Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cascade Weight Shedding in Deep Neural Networks: Benefits and Pitfalls for Network Pruning (2103.10629v1)

Published 19 Mar 2021 in cs.LG

Abstract: We report, for the first time, on the cascade weight shedding phenomenon in deep neural networks where in response to pruning a small percentage of a network's weights, a large percentage of the remaining is shed over a few epochs during the ensuing fine-tuning phase. We show that cascade weight shedding, when present, can significantly improve the performance of an otherwise sub-optimal scheme such as random pruning. This explains why some pruning methods may perform well under certain circumstances, but poorly under others, e.g., ResNet50 vs. MobileNetV3. We provide insight into why the global magnitude-based pruning, i.e., GMP, despite its simplicity, provides a competitive performance for a wide range of scenarios. We also demonstrate cascade weight shedding's potential for improving GMP's accuracy, and reduce its computational complexity. In doing so, we highlight the importance of pruning and learning-rate schedules. We shed light on weight and learning-rate rewinding methods of re-training, showing their possible connections to the cascade weight shedding and reason for their advantage over fine-tuning. We also investigate cascade weight shedding's effect on the set of kept weights, and its implications for semi-structured pruning. Finally, we give directions for future research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kambiz Azarian (7 papers)
  2. Fatih Porikli (141 papers)

Summary

We haven't generated a summary for this paper yet.