Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Disentanglement with Grouped Observations (2001.04761v1)

Published 14 Jan 2020 in cs.LG and stat.ML

Abstract: We consider the disentanglement of the representations of the relevant attributes of the data (content) from all other factors of variations (style) using Variational Autoencoders. Some recent works addressed this problem by utilizing grouped observations, where the content attributes are assumed to be common within each group, while there is no any supervised information on the style factors. In many cases, however, these methods fail to prevent the models from using the style variables to encode content related features as well. This work supplements these algorithms with a method that eliminates the content information in the style representations. For that purpose the training objective is augmented to minimize an appropriately defined mutual information term in an adversarial way. Experimental results and comparisons on image datasets show that the resulting method can efficiently separate the content and style related attributes and generalizes to unseen data.

Citations (8)

Summary

We haven't generated a summary for this paper yet.