Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Style and Content Disentanglement in Generative Adversarial Networks (1811.05621v1)

Published 14 Nov 2018 in cs.CV

Abstract: Disentangling factors of variation within data has become a very challenging problem for image generation tasks. Current frameworks for training a Generative Adversarial Network (GAN), learn to disentangle the representations of the data in an unsupervised fashion and capture the most significant factors of the data variations. However, these approaches ignore the principle of content and style disentanglement in image generation, which means their learned latent code may alter the content and style of the generated images at the same time. This paper describes the Style and Content Disentangled GAN (SC-GAN), a new unsupervised algorithm for training GANs that learns disentangled style and content representations of the data. We assume that the representation of an image can be decomposed into a content code that represents the geometrical information of the data, and a style code that captures textural properties. Consequently, by fixing the style portion of the latent representation, we can generate diverse images in a particular style. Reversely, we can set the content code and generate a specific scene in a variety of styles. The proposed SC-GAN has two components: a content code which is the input to the generator, and a style code which modifies the scene style through modification of the Adaptive Instance Normalization (AdaIN) layers' parameters. We evaluate the proposed SC-GAN framework on a set of baseline datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hadi Kazemi (20 papers)
  2. Seyed Mehdi Iranmanesh (18 papers)
  3. Nasser M. Nasrabadi (104 papers)
Citations (67)

Summary

We haven't generated a summary for this paper yet.