Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Edge Preserving CNN SAR Despeckling Algorithm (2001.04716v3)

Published 14 Jan 2020 in eess.IV and cs.CV

Abstract: SAR despeckling is a key tool for Earth Observation. Interpretation of SAR images are impaired by speckle, a multiplicative noise related to interference of backscattering from the illuminated scene towards the sensor. Reducing the noise is a crucial task for the understanding of the scene. Based on the results of our previous solution KL-DNN, in this work we define a new cost function for training a convolutional neural network for despeckling. The aim is to control the edge preservation and to better filter manmade structures and urban areas that are very challenging for KL-DNN. The results show a very good improvement on the not homogeneous areas keeping the good results in the homogeneous ones. Result on both simulated and real data are shown in the paper.

Citations (8)

Summary

We haven't generated a summary for this paper yet.