Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Objective CNN Based Algorithm for SAR Despeckling (2006.09050v4)

Published 16 Jun 2020 in eess.IV and cs.CV

Abstract: Deep learning (DL) in remote sensing has nowadays become an effective operative tool: it is largely used in applications such as change detection, image restoration, segmentation, detection and classification. With reference to synthetic aperture radar (SAR) domain the application of DL techniques is not straightforward due to non trivial interpretation of SAR images, specially caused by the presence of speckle. Several deep learning solutions for SAR despeckling have been proposed in the last few years. Most of these solutions focus on the definition of different network architectures with similar cost functions not involving SAR image properties. In this paper, a convolutional neural network (CNN) with a multi-objective cost function taking care of spatial and statistical properties of the SAR image is proposed. This is achieved by the definition of a peculiar loss function obtained by the weighted combination of three different terms. Each of this term is dedicated mainly to one of the following SAR image characteristics: spatial details, speckle statistical properties and strong scatterers identification. Their combination allows to balance these effects. Moreover, a specifically designed architecture is proposed for effectively extract distinctive features within the considered framework. Experiments on simulated and real SAR images show the accuracy of the proposed method compared to the State-of-Art despeckling algorithms, both from quantitative and qualitative point of view. The importance of considering such SAR properties in the cost function is crucial for a correct noise rejection and details preservation in different underlined scenarios, such as homogeneous, heterogeneous and extremely heterogeneous.

Citations (68)

Summary

We haven't generated a summary for this paper yet.