Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Cross-lingual Embeddings from Parallel Sentences (1912.12481v2)

Published 28 Dec 2019 in cs.CL, cs.IR, and cs.LG

Abstract: Recent advances in cross-lingual word embeddings have primarily relied on mapping-based methods, which project pretrained word embeddings from different languages into a shared space through a linear transformation. However, these approaches assume word embedding spaces are isomorphic between different languages, which has been shown not to hold in practice (S{\o}gaard et al., 2018), and fundamentally limits their performance. This motivates investigating joint learning methods which can overcome this impediment, by simultaneously learning embeddings across languages via a cross-lingual term in the training objective. We propose a bilingual extension of the CBOW method which leverages sentence-aligned corpora to obtain robust cross-lingual word and sentence representations. Our approach significantly improves cross-lingual sentence retrieval performance over all other approaches while maintaining parity with the current state-of-the-art methods on word-translation. It also achieves parity with a deep RNN method on a zero-shot cross-lingual document classification task, requiring far fewer computational resources for training and inference. As an additional advantage, our bilingual method leads to a much more pronounced improvement in the the quality of monolingual word vectors compared to other competing methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ali Sabet (2 papers)
  2. Prakhar Gupta (31 papers)
  3. Jean-Baptiste Cordonnier (8 papers)
  4. Robert West (154 papers)
  5. Martin Jaggi (155 papers)
Citations (15)