Hodge ideals of free divisors
Abstract: We consider the Hodge filtration on the sheaf of meromorphic functions along free divisors for which the logarithmic comparison theorem holds. We describe the Hodge filtration steps as submodules of the order filtration on a cyclic presentation in terms of a special factor of the Bernstein-Sato polynomial of the divisor and we conjecture a bound for the generating level of the Hodge filtration. Finally, we develop an algorithm to compute Hodge ideals of such divisors and we apply it to some examples.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.