Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Spatially and Temporally Attentive Joint Trajectory Prediction Framework for Modeling Vessel Intent (1912.09429v1)

Published 18 Dec 2019 in eess.SP, cs.SY, and eess.SY

Abstract: Ships, or vessels, often sail in and out of cluttered environments over the course of their trajectories. Safe navigation in such cluttered scenarios requires an accurate estimation of the intent of neighboring vessels and their effect on the self and vice-versa well into the future. In manned vessels, this is achieved by constant communication between people on board, nautical experience, and audio and visual signals. In this paper we propose a deep neural network based architecture to predict intent of neighboring vessels into the future for an unmanned vessel solely based on positional data.

Citations (15)

Summary

We haven't generated a summary for this paper yet.