Papers
Topics
Authors
Recent
2000 character limit reached

Positive Line Bundles Over the Irreducible Quantum Flag Manifolds

Published 18 Dec 2019 in math.QA, math.AG, math.DG, and math.OA | (1912.08802v6)

Abstract: Noncommutative K\"ahler structures were recently introduced by the second author as a framework for studying noncommutative K\"ahler geometry on quantum homogeneous spaces. It was subsequently observed that the notion of a positive vector bundle directly generalises to this setting, as does the Kodaira vanishing theorem. In this paper, by restricting to covariant K\"ahler structures of irreducible type (those having an irreducible space of holomorphic one-forms) we provide simple cohomological criteria for positivity, offering a means to avoid explicit curvature calculations. These general results are applied to our motivating family of examples, the irreducible quantum flag manifolds $\mathcal{O}_q(G/L_S)$. Building on the recently established noncommutative Borel-Weil theorem, every covariant line bundle over $\mathcal{O}_q(G/L_S)$ can be identified as positive, negative, or flat, and hence we can conclude that each K\"ahler structure is of Fano type. Moreover, it proves possible to extend the Borel-Weil theorem for $\mathcal{O}_q(G/L_S)$ to a direct noncommutative generalisation of the classical Bott-Borel-Weil theorem for positive line bundles.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.