Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Borel-Weil theorem for the irreducible quantum flag manifolds (2112.03305v1)

Published 6 Dec 2021 in math.QA, math.DG, and math.RT

Abstract: We establish a noncommutative generalisation of the Borel-Weil theorem for the Heckenberger-Kolb calculi of the irreducible quantum flag manifolds $\mathcal{O}q(G/L_S)$, generalising previous work of a number of authors (including the first and third authors of this paper) on the quantum Grassmannians $\mathcal{O}_q(\mathrm{Gr}{n,m})$. As a direct consequence we get a novel noncommutative differential geometric presentation of the quantum coordinate rings $S_q[G/L_S]$ of the irreducible quantum flag manifolds. The proof is formulated in terms of quantum principal bundles, and the recently introduced notion of a principal pair, and uses the Heckenberger and Kolb first-order differential calculus for the quantum Possion homogeneous spaces $\mathcal{O}_q(G/L{\mathrm{s}}_S)$.

Summary

We haven't generated a summary for this paper yet.