Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chinese Named Entity Recognition Augmented with Lexicon Memory (1912.08282v2)

Published 17 Dec 2019 in cs.CL

Abstract: Inspired by a concept of content-addressable retrieval from cognitive science, we propose a novel fragment-based model augmented with a lexicon-based memory for Chinese NER, in which both the character-level and word-level features are combined to generate better feature representations for possible name candidates. It is observed that locating the boundary information of entity names is useful in order to classify them into pre-defined categories. Position-dependent features, including prefix and suffix are introduced for NER in the form of distributed representation. The lexicon-based memory is used to help generate such position-dependent features and deal with the problem of out-of-vocabulary words. Experimental results showed that the proposed model, called LEMON, achieved state-of-the-art on four datasets.

Citations (5)

Summary

We haven't generated a summary for this paper yet.