Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extracting clinical concepts from user queries (1912.06262v2)

Published 12 Dec 2019 in cs.IR, cs.CL, and cs.LG

Abstract: Clinical concept extraction often begins with clinical Named Entity Recognition (NER). Often trained on annotated clinical notes, clinical NER models tend to struggle with tagging clinical entities in user queries because of the structural differences between clinical notes and user queries. User queries, unlike clinical notes, are often ungrammatical and incoherent. In many cases, user queries are compounded of multiple clinical entities, without comma or conjunction words separating them. By using as dataset a mixture of annotated clinical notes and synthesized user queries, we adapt a clinical NER model based on the BiLSTM-CRF architecture for tagging clinical entities in user queries. Our contribution are the following: 1) We found that when trained on a mixture of synthesized user queries and clinical notes, the NER model performs better on both user queries and clinical notes. 2) We provide an end-to-end and easy-to-implement framework for clinical concept extraction from user queries.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yue Zhao (394 papers)
  2. John Handley (3 papers)
Citations (1)