Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Tits-Weiss Conjecture and the Kneser-Tits Conjecture for $\mathrm{E}^{78}_{7,1}$ and $\mathrm{E}^{78}_{8,2}$ (1911.12908v1)

Published 29 Nov 2019 in math.RA, math.AG, and math.GR

Abstract: We prove that the structure group of any Albert algebra over an arbitrary field is $R$-trivial. This implies the Tits-Weiss conjecture for Albert algebras and the Kneser-Tits conjecture for isotropic groups of type $\mathrm{E}{7,1}{78}, \mathrm{E}{8,2}{78}$. As a further corollary, we show that some standard conjectures on the groups of $R$-equivalence classes in algebraic groups and the norm principle are true for strongly inner forms of type $1\mathrm{E}_6$.

Summary

We haven't generated a summary for this paper yet.