Bivariant algebraic cobordism with bundles (1911.12484v2)
Abstract: The purpose of this paper is to study an extended version of bivariant derived algebraic cobordism where the cycles carry a vector bundle on the source as additional data. We show that, over a field of characteristic 0, this extends the analogous homological theory of Lee and Pandharipande constructed earlier. We then proceed to study in detail the restricted theory where only rank 1 vector bundles are allowed, and prove a weak version of projective bundle formula for bivariant cobordism. Since the proof of this theorem works very generally, we introduce precobordism theories over arbitrary Noetherian rings of finite Krull dimension as a reasonable class of theories where the proof can be carried out, and prove some of their basic properties. These results can be considered as the first steps towards a Levine-Morel style algebraic cobordism over a base ring that is not a field of characteristic 0.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.