Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Smartphone-Based Skin Disease Classification Using MobileNet CNN (1911.07929v1)

Published 13 Nov 2019 in cs.CV, cs.CY, cs.LG, eess.IV, and stat.ML

Abstract: The MobileNet model was used by applying transfer learning on the 7 skin diseases to create a skin disease classification system on Android application. The proponents gathered a total of 3,406 images and it is considered as imbalanced dataset because of the unequal number of images on its classes. Using different sampling method and preprocessing of input data was explored to further improved the accuracy of the MobileNet. Using under-sampling method and the default preprocessing of input data achieved an 84.28% accuracy. While, using imbalanced dataset and default preprocessing of input data achieved a 93.6% accuracy. Then, researchers explored oversampling the dataset and the model attained a 91.8% accuracy. Lastly, by using oversampling technique and data augmentation on preprocessing the input data provide a 94.4% accuracy and this model was deployed on the developed Android application.

Citations (81)

Summary

We haven't generated a summary for this paper yet.