Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting structural breaks in eigensystems of functional time series (1911.07580v1)

Published 18 Nov 2019 in math.ST and stat.TH

Abstract: Detecting structural changes in functional data is a prominent topic in statistical literature. However not all trends in the data are important in applications, but only those of large enough influence. In this paper we address the problem of identifying relevant changes in the eigenfunctions and eigenvalues of covariance kernels of $L2[0,1]$-valued time series. By self-normalization techniques we derive pivotal, asymptotically consistent tests for relevant changes in these characteristics of the second order structure and investigate their finite sample properties in a simulation study. The applicability of our approach is demonstrated analyzing German annual temperature data.

Summary

We haven't generated a summary for this paper yet.