Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

A Capsule Network-based Model for Learning Node Embeddings (1911.04822v2)

Published 12 Nov 2019 in cs.LG, cs.CL, and stat.ML

Abstract: In this paper, we focus on learning low-dimensional embeddings for nodes in graph-structured data. To achieve this, we propose Caps2NE -- a new unsupervised embedding model leveraging a network of two capsule layers. Caps2NE induces a routing process to aggregate feature vectors of context neighbors of a given target node at the first capsule layer, then feed these features into the second capsule layer to infer a plausible embedding for the target node. Experimental results show that our proposed Caps2NE obtains state-of-the-art performances on benchmark datasets for the node classification task. Our code is available at: \url{https://github.com/daiquocnguyen/Caps2NE}.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com