Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MRI denoising using Deep Learning and Non-local averaging (1911.04798v2)

Published 12 Nov 2019 in eess.IV, cs.NA, and math.NA

Abstract: This paper proposes a novel method for automatic MRI denoising that exploits last advances in deep learning feature regression and self-similarity properties of the MR images. The proposed method is a two-stage approach. In the first stage, an overcomplete patch-based convolutional neural network blindly removes the noise without specific estimation of the local noise variance to produce a preliminary estimation of the noise-free image. The second stage uses this preliminary denoised image as a guide image within a rotationally invariant non-local means filter to robustly denoise the original noisy image. The proposed approach has been compared with related state-of-the-art methods and showed competitive results in all the studied cases while being much faster than comparable filters. We present a denoising method that can be blindly applied to any type of MR image since it can automatically deal with both stationary and spatially varying noise patterns.

Citations (25)

Summary

We haven't generated a summary for this paper yet.