Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DialogAct2Vec: Towards End-to-End Dialogue Agent by Multi-Task Representation Learning (1911.04088v1)

Published 11 Nov 2019 in cs.CL

Abstract: In end-to-end dialogue modeling and agent learning, it is important to (1) effectively learn knowledge from data, and (2) fully utilize heterogeneous information, e.g., dialogue act flow and utterances. However, the majority of existing methods cannot simultaneously satisfy the two conditions. For example, rule definition and data labeling during system design take too much manual work, and sequence-to-sequence methods only model one-side utterance information. In this paper, we propose a novel joint end-to-end model by multi-task representation learning, which can capture the knowledge from heterogeneous information through automatically learning knowledgeable low-dimensional embeddings from data, named with DialogAct2Vec. The model requires little manual work for intervention in system design and we find that the multi-task learning can greatly improve the effectiveness of representation learning. Extensive experiments on a public dataset for restaurant reservation show that the proposed method leads to significant improvements against the state-of-the-art baselines on both the act prediction task and utterance prediction task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhuoxuan Jiang (12 papers)
  2. Ziming Huang (8 papers)
  3. Dong Sheng Li (1 paper)
  4. Xian-Ling Mao (76 papers)
Citations (2)