Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Context Network for Scene Parsing (1911.01664v1)

Published 5 Nov 2019 in cs.CV

Abstract: Recent works attempt to improve scene parsing performance by exploring different levels of contexts, and typically train a well-designed convolutional network to exploit useful contexts across all pixels equally. However, in this paper, we find that the context demands are varying from different pixels or regions in each image. Based on this observation, we propose an Adaptive Context Network (ACNet) to capture the pixel-aware contexts by a competitive fusion of global context and local context according to different per-pixel demands. Specifically, when given a pixel, the global context demand is measured by the similarity between the global feature and its local feature, whose reverse value can be used to measure the local context demand. We model the two demand measurements by the proposed global context module and local context module, respectively, to generate adaptive contextual features. Furthermore, we import multiple such modules to build several adaptive context blocks in different levels of network to obtain a coarse-to-fine result. Finally, comprehensive experimental evaluations demonstrate the effectiveness of the proposed ACNet, and new state-of-the-arts performances are achieved on all four public datasets, i.e. Cityscapes, ADE20K, PASCAL Context, and COCO Stuff.

Citations (134)

Summary

We haven't generated a summary for this paper yet.