Papers
Topics
Authors
Recent
2000 character limit reached

Abstractions and automated algorithms for mixed domain finite element methods

Published 4 Nov 2019 in cs.MS, cs.NA, and math.NA | (1911.01166v1)

Abstract: Mixed dimensional partial differential equations (PDEs) are equations coupling unknown fields defined over domains of differing topological dimension. Such equations naturally arise in a wide range of scientific fields including geology, physiology, biology and fracture mechanics. Mixed dimensional PDEs are also commonly encountered when imposing non-standard conditions over a subspace of lower dimension e.g. through a Lagrange multiplier. In this paper, we present general abstractions and algorithms for finite element discretizations of mixed domain and mixed dimensional PDEs of co-dimension up to one (i.e. nD-mD with |n-m| <= 1). We introduce high level mathematical software abstractions together with lower level algorithms for expressing and efficiently solving such coupled systems. The concepts introduced here have also been implemented in the context of the FEniCS finite element software. We illustrate the new features through a range of examples, including a constrained Poisson problem, a set of Stokes-type flow models and a model for ionic electrodiffusion.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.