Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimator Vectors: OOV Word Embeddings based on Subword and Context Clue Estimates (1910.10491v1)

Published 18 Oct 2019 in cs.CL, cs.LG, and stat.ML

Abstract: Semantic representations of words have been successfully extracted from unlabeled corpuses using neural network models like word2vec. These representations are generally high quality and are computationally inexpensive to train, making them popular. However, these approaches generally fail to approximate out of vocabulary (OOV) words, a task humans can do quite easily, using word roots and context clues. This paper proposes a neural network model that learns high quality word representations, subword representations, and context clue representations jointly. Learning all three types of representations together enhances the learning of each, leading to enriched word vectors, along with strong estimates for OOV words, via the combination of the corresponding context clue and subword embeddings. Our model, called Estimator Vectors (EV), learns strong word embeddings and is competitive with state of the art methods for OOV estimation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Raj Patel (10 papers)
  2. Carlotta Domeniconi (32 papers)
Citations (5)