Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recurrent neural network approach for cyclic job shop scheduling problem (1910.09437v1)

Published 21 Oct 2019 in cs.AI

Abstract: While cyclic scheduling is involved in numerous real-world applications, solving the derived problem is still of exponential complexity. This paper focuses specifically on modelling the manufacturing application as a cyclic job shop problem and we have developed an efficient neural network approach to minimise the cycle time of a schedule. Our approach introduces an interesting model for a manufacturing production, and it is also very efficient, adaptive and flexible enough to work with other techniques. Experimental results validated the approach and confirmed our hypotheses about the system model and the efficiency of neural networks for such a class of problems.

Citations (17)

Summary

We haven't generated a summary for this paper yet.