Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Attentive Knowledge Graph Embedding for Personalized Recommendation (1910.08288v4)

Published 18 Oct 2019 in cs.IR and cs.LG

Abstract: Knowledge graphs (KGs) have proven to be effective for high-quality recommendation, where the connectivities between users and items provide rich and complementary information to user-item interactions. Most existing methods, however, are insufficient to exploit the KGs for capturing user preferences, as they either represent the user-item connectivities via paths with limited expressiveness or implicitly model them by propagating information over the entire KG with inevitable noise. In this paper, we design a novel hierarchical attentive knowledge graph embedding (HAKG) framework to exploit the KGs for effective recommendation. Specifically, HAKG first extracts the expressive subgraphs that link user-item pairs to characterize their connectivities, which accommodate both the semantics and topology of KGs. The subgraphs are then encoded via a hierarchical attentive subgraph encoding to generate effective subgraph embeddings for enhanced user preference prediction. Extensive experiments show the superiority of HAKG against state-of-the-art recommendation methods, as well as its potential in alleviating the data sparsity issue.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xiao Sha (1 paper)
  2. Zhu Sun (32 papers)
  3. Jie Zhang (846 papers)
Citations (57)