Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Learning in Planar Pushing with Combined Prediction Model (1910.08181v1)

Published 17 Oct 2019 in cs.RO and cs.LG

Abstract: Pushing is a useful robotic capability for positioning and reorienting objects. The ability to accurately predict the effect of pushes can enable efficient trajectory planning and complicated object manipulation. Physical prediction models for planar pushing have long been established, but their assumptions and requirements usually don't hold in most practical settings. Data-driven approaches can provide accurate predictions for offline data, but they often have generalizability issues. In this paper, we propose a combined prediction model and an online learning framework for planar push prediction. The combined model consists of a neural network module and analytical components with a low-dimensional parameter. We train the neural network offline using pre-collected pushing data. In online situations, the low-dimensional analytical parameter is learned directly from online pushes to quickly adapt to the new environments. We test our combined model and learning framework on real pushing experiments. Our experimental results show that our model is able to quickly adapt to new environments while achieving similar final prediction performance as that of pure neural network models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Huidong Gao (4 papers)
  2. Yi Ouyang (55 papers)
  3. Masayoshi Tomizuka (261 papers)
Citations (3)