Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning for Robotic Manipulation using Simulated Locomotion Demonstrations (1910.07294v4)

Published 16 Oct 2019 in cs.LG, cs.AI, cs.RO, and stat.ML

Abstract: Mastering robotic manipulation skills through reinforcement learning (RL) typically requires the design of shaped reward functions. Recent developments in this area have demonstrated that using sparse rewards, i.e. rewarding the agent only when the task has been successfully completed, can lead to better policies. However, state-action space exploration is more difficult in this case. Recent RL approaches to learning with sparse rewards have leveraged high-quality human demonstrations for the task, but these can be costly, time consuming or even impossible to obtain. In this paper, we propose a novel and effective approach that does not require human demonstrations. We observe that every robotic manipulation task could be seen as involving a locomotion task from the perspective of the object being manipulated, i.e. the object could learn how to reach a target state on its own. In order to exploit this idea, we introduce a framework whereby an object locomotion policy is initially obtained using a realistic physics simulator. This policy is then used to generate auxiliary rewards, called simulated locomotion demonstration rewards (SLDRs), which enable us to learn the robot manipulation policy. The proposed approach has been evaluated on 13 tasks of increasing complexity, and can achieve higher success rate and faster learning rates compared to alternative algorithms. SLDRs are especially beneficial for tasks like multi-object stacking and non-rigid object manipulation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ozsel Kilinc (12 papers)
  2. Giovanni Montana (74 papers)
Citations (34)