Papers
Topics
Authors
Recent
Search
2000 character limit reached

Spectrum of the reflection operators in different integrable structures

Published 14 Oct 2019 in hep-th, cond-mat.stat-mech, math-ph, math.MP, and math.QA | (1910.05947v2)

Abstract: The reflection operators are the simplest examples of the non-local integrals of motion, which appear in many interesting problems in integrable CFT. For the so-called Fateev, quantum AKNS, paperclip and KdV integrable structures, they are built from the (chiral) reflection S-matrices for the Liouville and cigar CFTs. Here we give the full spectrum of the reflection operators associated with these integrable structures. We also obtained a relation between the reflection S-matrices of the cigar and Liouville CFTs. The results of this work are applicable for the description of the scaling behaviour of the Bethe states in exactly solvable lattice systems and may be of interest to the study of the Generalized Gibbs Ensemble associated with the above mentioned integrable structures.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.