Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization (1910.04562v1)

Published 10 Oct 2019 in cs.CV

Abstract: Pedestrian attribute recognition has been an emerging research topic in the area of video surveillance. To predict the existence of a particular attribute, it is demanded to localize the regions related to the attribute. However, in this task, the region annotations are not available. How to carve out these attribute-related regions remains challenging. Existing methods applied attribute-agnostic visual attention or heuristic body-part localization mechanisms to enhance the local feature representations, while neglecting to employ attributes to define local feature areas. We propose a flexible Attribute Localization Module (ALM) to adaptively discover the most discriminative regions and learns the regional features for each attribute at multiple levels. Moreover, a feature pyramid architecture is also introduced to enhance the attribute-specific localization at low-levels with high-level semantic guidance. The proposed framework does not require additional region annotations and can be trained end-to-end with multi-level deep supervision. Extensive experiments show that the proposed method achieves state-of-the-art results on three pedestrian attribute datasets, including PETA, RAP, and PA-100K.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chufeng Tang (5 papers)
  2. Lu Sheng (63 papers)
  3. Zhaoxiang Zhang (162 papers)
  4. Xiaolin Hu (97 papers)
Citations (125)

Summary

We haven't generated a summary for this paper yet.