Papers
Topics
Authors
Recent
2000 character limit reached

Global Convergence Rate Analysis of a Generic Line Search Algorithm with Noise

Published 8 Oct 2019 in math.OC | (1910.04055v2)

Abstract: In this paper, we develop convergence analysis of a modified line search method for objective functions whose value is computed with noise and whose gradient estimates are inexact and possibly random. The noise is assumed to be bounded in absolute value without any additional assumptions. We extend the framework based on stochastic methods from [Cartis and Scheinberg, 2018] which was developed to provide analysis of a standard line search method with exact function values and random gradients to the case of noisy functions. We introduce two alternative conditions on the gradient which when satisfied with some sufficiently large probability at each iteration, guarantees convergence properties of the line search method. We derive expected complexity bounds to reach a near optimal neighborhood for convex, strongly convex and nonconvex functions. The exact dependence of the convergence neighborhood on the noise is specified.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.