Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pushing the limits of RNN Compression (1910.02558v2)

Published 4 Oct 2019 in cs.LG and stat.ML

Abstract: Recurrent Neural Networks (RNN) can be difficult to deploy on resource constrained devices due to their size. As a result, there is a need for compression techniques that can significantly compress RNNs without negatively impacting task accuracy. This paper introduces a method to compress RNNs for resource constrained environments using Kronecker product (KP). KPs can compress RNN layers by 16-38x with minimal accuracy loss. We show that KP can beat the task accuracy achieved by other state-of-the-art compression techniques (pruning and low-rank matrix factorization) across 4 benchmarks spanning 3 different applications, while simultaneously improving inference run-time.

Citations (13)

Summary

We haven't generated a summary for this paper yet.