Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving One-shot NAS by Suppressing the Posterior Fading (1910.02543v1)

Published 6 Oct 2019 in cs.CV

Abstract: There is a growing interest in automated neural architecture search (NAS). To improve the efficiency of NAS, previous approaches adopt weight sharing method to force all models share the same set of weights. However, it has been observed that a model performing better with shared weights does not necessarily perform better when trained alone. In this paper, we analyse existing weight sharing one-shot NAS approaches from a Bayesian point of view and identify the posterior fading problem, which compromises the effectiveness of shared weights. To alleviate this problem, we present a practical approach to guide the parameter posterior towards its true distribution. Moreover, a hard latency constraint is introduced during the search so that the desired latency can be achieved. The resulted method, namely Posterior Convergent NAS (PC-NAS), achieves state-of-the-art performance under standard GPU latency constraint on ImageNet. In our small search space, our model PC-NAS-S attains 76.8 % top-1 accuracy, 2.1% higher than MobileNetV2 (1.4x) with the same latency. When adopted to the large search space, PC-NAS-L achieves 78.1 % top-1 accuracy within 11ms. The discovered architecture also transfers well to other computer vision applications such as object detection and person re-identification.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Xiang Li (1003 papers)
  2. Chen Lin (75 papers)
  3. Chuming Li (19 papers)
  4. Ming Sun (146 papers)
  5. Wei Wu (482 papers)
  6. Junjie Yan (109 papers)
  7. Wanli Ouyang (358 papers)
Citations (74)