Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-supervised Feature Learning for 3D Medical Images by Playing a Rubik's Cube (1910.02241v1)

Published 5 Oct 2019 in cs.CV, cs.LG, and eess.IV

Abstract: Witnessed the development of deep learning, increasing number of studies try to build computer aided diagnosis systems for 3D volumetric medical data. However, as the annotations of 3D medical data are difficult to acquire, the number of annotated 3D medical images is often not enough to well train the deep learning networks. The self-supervised learning deeply exploiting the information of raw data is one of the potential solutions to loose the requirement of training data. In this paper, we propose a self-supervised learning framework for the volumetric medical images. A novel proxy task, i.e., Rubik's cube recovery, is formulated to pre-train 3D neural networks. The proxy task involves two operations, i.e., cube rearrangement and cube rotation, which enforce networks to learn translational and rotational invariant features from raw 3D data. Compared to the train-from-scratch strategy, fine-tuning from the pre-trained network leads to a better accuracy on various tasks, e.g., brain hemorrhage classification and brain tumor segmentation. We show that our self-supervised learning approach can substantially boost the accuracies of 3D deep learning networks on the volumetric medical datasets without using extra data. To our best knowledge, this is the first work focusing on the self-supervised learning of 3D neural networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Xinrui Zhuang (1 paper)
  2. Yuexiang Li (50 papers)
  3. Yifan Hu (89 papers)
  4. Kai Ma (126 papers)
  5. Yujiu Yang (155 papers)
  6. Yefeng Zheng (197 papers)
Citations (142)