Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fault Detection Using Nonlinear Low-Dimensional Representation of Sensor Data (1910.01150v1)

Published 2 Oct 2019 in eess.SP and stat.ML

Abstract: Sensor data analysis plays a key role in health assessment of critical equipment. Such data are multivariate and exhibit nonlinear relationships. This paper describes how one can exploit nonlinear dimension reduction techniques, such as the t-distributed stochastic neighbor embedding (t-SNE) and kernel principal component analysis (KPCA) for fault detection. We show that using anomaly detection with low dimensional representations provides better interpretability and is conducive to edge processing in IoT applications.

Summary

We haven't generated a summary for this paper yet.