Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding and Benchmarking the Impact of GDPR on Database Systems (1910.00728v4)

Published 2 Oct 2019 in cs.DB

Abstract: The General Data Protection Regulation (GDPR) provides new rights and protections to European people concerning their personal data. We analyze GDPR from a systems perspective, translating its legal articles into a set of capabilities and characteristics that compliant systems must support. Our analysis reveals the phenomenon of metadata explosion, wherein large quantities of metadata needs to be stored along with the personal data to satisfy the GDPR requirements. Our analysis also helps us identify new workloads that must be supported under GDPR. We design and implement an open-source benchmark called GDPRbench that consists of workloads and metrics needed to understand and assess personal-data processing database systems. To gauge the readiness of modern database systems for GDPR, we follow best practices and developer recommendations to modify Redis, PostgreSQL, and a commercial database system to be GDPR compliant. Our experiments demonstrate that the resulting GDPR compliant systems achieve poor performance on GPDR workloads, and that performance scales poorly as the volume of personal data increases. We discuss the real-world implications of these findings, and identify research challenges towards making GDPR compliance efficient in production environments. We release all of our software artifacts and datasets at http://www.gdprbench.org

Citations (69)

Summary

We haven't generated a summary for this paper yet.