Papers
Topics
Authors
Recent
Search
2000 character limit reached

A stabilized sequential quadratic semidefinite programming method for degenerate nonlinear semidefinite programs

Published 30 Sep 2019 in math.OC | (1909.13544v3)

Abstract: In this paper, we propose a new sequential quadratic semidefinite programming (SQSDP) method for solving degenerate nonlinear semidefinite programs (NSDPs), in which we produce iteration points by solving a sequence of stabilized quadratic semidefinite programming (QSDP) subproblems, which we derive from the minimax problem associated with the NSDP. Unlike the existing SQSDP methods, the proposed one allows us to solve those QSDP subproblems inexactly, and each QSDP is feasible. One more remarkable point of the proposed method is that constraint qualifications (CQs) or boundedness of Lagrange multiplier sequences are not required in the global convergence analysis. Specifically, without assuming such conditions, we prove the global convergence to a point satisfying any of the following: the stationary conditions for the feasibility problem, the approximate-Karush-Kuhn-Tucker (AKKT) conditions, and the trace-AKKT conditions. Finally, we conduct some numerical experiments to examine the efficiency of the proposed method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.