Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speaker Verification in Emotional Talking Environments based on Third-Order Circular Suprasegmental Hidden Markov Model (1909.13244v2)

Published 29 Sep 2019 in cs.SD and eess.AS

Abstract: Speaker verification accuracy in emotional talking environments is not high as it is in neutral ones. This work aims at accepting or rejecting the claimed speaker using his/her voice in emotional environments based on the Third-Order Circular Suprasegmental Hidden Markov Model (CSPHMM3) as a classifier. An Emirati-accented (Arabic) speech database with Mel-Frequency Cepstral Coefficients as the extracted features has been used to evaluate our work. Our results demonstrate that speaker verification accuracy based on CSPHMM3 is greater than that based on the state-of-the-art classifiers and models such as Gaussian Mixture Model (GMM), Support Vector Machine (SVM), and Vector Quantization (VQ).

Citations (3)

Summary

We haven't generated a summary for this paper yet.