Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly Supervised Energy-Based Learning for Action Segmentation (1909.13155v1)

Published 28 Sep 2019 in cs.CV

Abstract: This paper is about labeling video frames with action classes under weak supervision in training, where we have access to a temporal ordering of actions, but their start and end frames in training videos are unknown. Following prior work, we use an HMM grounded on a Gated Recurrent Unit (GRU) for frame labeling. Our key contribution is a new constrained discriminative forward loss (CDFL) that we use for training the HMM and GRU under weak supervision. While prior work typically estimates the loss on a single, inferred video segmentation, our CDFL discriminates between the energy of all valid and invalid frame labelings of a training video. A valid frame labeling satisfies the ground-truth temporal ordering of actions, whereas an invalid one violates the ground truth. We specify an efficient recursive algorithm for computing the CDFL in terms of the logadd function of the segmentation energy. Our evaluation on action segmentation and alignment gives superior results to those of the state of the art on the benchmark Breakfast Action, Hollywood Extended, and 50Salads datasets.

Citations (86)

Summary

We haven't generated a summary for this paper yet.