Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convergence of adaptive discontinuous Galerkin methods (corrected version of [Math. Comp. 87 (2018), no. 314, 2611--2640])

Published 27 Sep 2019 in math.NA and cs.NA | (1909.12665v2)

Abstract: We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only necessary for the standard analysis of the respective scheme. The analysis is based on a quasi interpolation into a newly developed limit space of the adaptively created non-conforming discrete spaces, which enables to generalise the basic convergence result for conforming adaptive finite element methods by Morin, Siebert, and Veeser [A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci., 2008, 18(5), 707--737].

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.