Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reweighted Proximal Pruning for Large-Scale Language Representation (1909.12486v2)

Published 27 Sep 2019 in cs.LG, cs.CL, cs.NE, and stat.ML

Abstract: Recently, pre-trained language representation flourishes as the mainstay of the natural language understanding community, e.g., BERT. These pre-trained language representations can create state-of-the-art results on a wide range of downstream tasks. Along with continuous significant performance improvement, the size and complexity of these pre-trained neural models continue to increase rapidly. Is it possible to compress these large-scale language representation models? How will the pruned language representation affect the downstream multi-task transfer learning objectives? In this paper, we propose Reweighted Proximal Pruning (RPP), a new pruning method specifically designed for a large-scale language representation model. Through experiments on SQuAD and the GLUE benchmark suite, we show that proximal pruned BERT keeps high accuracy for both the pre-training task and the downstream multiple fine-tuning tasks at high prune ratio. RPP provides a new perspective to help us analyze what large-scale language representation might learn. Additionally, RPP makes it possible to deploy a large state-of-the-art language representation model such as BERT on a series of distinct devices (e.g., online servers, mobile phones, and edge devices).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Fu-Ming Guo (7 papers)
  2. Sijia Liu (204 papers)
  3. Finlay S. Mungall (1 paper)
  4. Xue Lin (92 papers)
  5. Yanzhi Wang (197 papers)
Citations (66)