Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Decision-Based Dynamic Ensemble Selection Method for Concept Drift (1909.12185v1)

Published 26 Sep 2019 in cs.LG and stat.ML

Abstract: We propose an online method for concept driftdetection based on dynamic classifier ensemble selection. Theproposed method generates a pool of ensembles by promotingdiversity among classifier members and chooses expert ensemblesaccording to global prequential accuracy values. Unlike currentdynamic ensemble selection approaches that use only local knowl-edge to select the most competent ensemble for each instance,our method focuses on selection taking into account the decisionspace. Consequently, it is well adapted to the context of driftdetection in data stream problems. The results of the experimentsshow that the proposed method attained the highest detection pre-cision and the lowest number of false alarms, besides competitiveclassification accuracy rates, in artificial datasets representingdifferent types of drifts. Moreover, it outperformed baselines indifferent real-problem datasets in terms of classification accuracy.

Citations (10)

Summary

We haven't generated a summary for this paper yet.