Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Kimi K2 210 tok/s Pro
2000 character limit reached

MIC: Mining Interclass Characteristics for Improved Metric Learning (1909.11574v1)

Published 25 Sep 2019 in cs.CV

Abstract: Metric learning seeks to embed images of objects suchthat class-defined relations are captured by the embeddingspace. However, variability in images is not just due to different depicted object classes, but also depends on other latent characteristics such as viewpoint or illumination. In addition to these structured properties, random noise further obstructs the visual relations of interest. The common approach to metric learning is to enforce a representation that is invariant under all factors but the ones of interest. In contrast, we propose to explicitly learn the latent characteristics that are shared by and go across object classes. We can then directly explain away structured visual variability, rather than assuming it to be unknown random noise. We propose a novel surrogate task to learn visual characteristics shared across classes with a separate encoder. This encoder is trained jointly with the encoder for class information by reducing their mutual information. On five standard image retrieval benchmarks the approach significantly improves upon the state-of-the-art.

Citations (90)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.