Papers
Topics
Authors
Recent
Search
2000 character limit reached

Curvatures, graph products and Ricci flatness

Published 25 Sep 2019 in math.CO and math.DG | (1909.11565v1)

Abstract: In this paper, we compare Ollivier Ricci curvature and Bakry-\'Emery curvature notions on combinatorial graphs and discuss connections to various types of Ricci flatness. We show that non-negativity of Ollivier Ricci curvature implies non-negativity of Bakry-\'Emery curvature under triangle-freeness and an additional in-degree condition. We also provide examples that both conditions of this result are necessary. We investigate relations to graph products and show that Ricci flatness is preserved under all natural products. While non-negativity of both curvatures are preserved under Cartesian products, we show that in the case of strong products, non-negativity of Ollivier Ricci curvature is only preserved for horizontal and vertical edges. We also prove that all distance-regular graphs of girth $4$ attain their maximal possible curvature values.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.