Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Generative Rhetorical Structure Parsing (1909.11049v1)

Published 24 Sep 2019 in cs.CL

Abstract: Rhetorical structure trees have been shown to be useful for several document-level tasks including summarization and document classification. Previous approaches to RST parsing have used discriminative models; however, these are less sample efficient than generative models, and RST parsing datasets are typically small. In this paper, we present the first generative model for RST parsing. Our model is a document-level RNN grammar (RNNG) with a bottom-up traversal order. We show that, for our parser's traversal order, previous beam search algorithms for RNNGs have a left-branching bias which is ill-suited for RST parsing. We develop a novel beam search algorithm that keeps track of both structure- and word-generating actions without exhibiting this branching bias and results in absolute improvements of 6.8 and 2.9 on unlabelled and labelled F1 over previous algorithms. Overall, our generative model outperforms a discriminative model with the same features by 2.6 F1 points and achieves performance comparable to the state-of-the-art, outperforming all published parsers from a recent replication study that do not use additional training data.

Citations (22)

Summary

We haven't generated a summary for this paper yet.