Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

COLTRANE: ConvolutiOnaL TRAjectory NEtwork for Deep Map Inference (1909.11048v1)

Published 24 Sep 2019 in cs.CV

Abstract: The process of automatic generation of a road map from GPS trajectories, called map inference, remains a challenging task to perform on a geospatial data from a variety of domains as the majority of existing studies focus on road maps in cities. Inherently, existing algorithms are not guaranteed to work on unusual geospatial sites, such as an airport tarmac, pedestrianized paths and shortcuts, or animal migration routes, etc. Moreover, deep learning has not been explored well enough for such tasks. This paper introduces COLTRANE, ConvolutiOnaL TRAjectory NEtwork, a novel deep map inference framework which operates on GPS trajectories collected in various environments. This framework includes an Iterated Trajectory Mean Shift (ITMS) module to localize road centerlines, which copes with noisy GPS data points. Convolutional Neural Network trained on our novel trajectory descriptor is then introduced into our framework to detect and accurately classify junctions for refinement of the road maps. COLTRANE yields up to 37% improvement in F1 scores over existing methods on two distinct real-world datasets: city roads and airport tarmac.

Citations (16)

Summary

We haven't generated a summary for this paper yet.