Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Module categories over affine supergroup schemes (1909.10908v2)

Published 21 Sep 2019 in math.QA

Abstract: Let $k$ be an algebraically closed field of characteristic $0$ or $p>2$. Let $\mathcal{G}$ be an affine supergroup scheme over $k$. We classify the indecomposable exact module categories over the tensor category ${\rm sCoh}_{\rm f}(\mathcal{G})$ of (coherent sheaves of) finite dimensional $\mathcal{O}(\mathcal{G})$-supermodules in terms of $(\mathcal{H},\Psi)$-equivariant coherent sheaves on $\mathcal{G}$. We deduce from it the classification of indecomposable {\em geometrical} module categories over $\sRep(\mathcal{G})$. When $\mathcal{G}$ is finite, this yields the classification of {\em all} indecomposable exact module categories over the finite tensor category $\sRep(\mathcal{G})$. In particular, we obtain a classification of twists for the supergroup algebra $k\mathcal{G}$ of a finite supergroup scheme $\mathcal{G}$, and then combine it with \cite[Corollary 4.1]{EG3} to classify finite dimensional triangular Hopf algebras with the Chevalley property over $k$.

Summary

We haven't generated a summary for this paper yet.