Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

AHA! an 'Artificial Hippocampal Algorithm' for Episodic Machine Learning (1909.10340v5)

Published 23 Sep 2019 in cs.NE, cs.LG, q-bio.NC, and stat.ML

Abstract: The majority of ML research concerns slow, statistical learning of i.i.d. samples from large, labelled datasets. Animals do not learn this way. An enviable characteristic of animal learning is `episodic' learning - the ability to memorise a specific experience as a composition of existing concepts, after just one experience, without provided labels. The new knowledge can then be used to distinguish between similar experiences, to generalise between classes, and to selectively consolidate to long-term memory. The Hippocampus is known to be vital to these abilities. AHA is a biologically-plausible computational model of the Hippocampus. Unlike most machine learning models, AHA is trained without external labels and uses only local credit assignment. We demonstrate AHA in a superset of the Omniglot one-shot classification benchmark. The extended benchmark covers a wider range of known hippocampal functions by testing pattern separation, completion, and recall of original input. These functions are all performed within a single configuration of the computational model. Despite these constraints, image classification results are comparable to conventional deep convolutional ANNs.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.