Papers
Topics
Authors
Recent
2000 character limit reached

Using theoretical ROC curves for analysing machine learning binary classifiers (1909.09816v1)

Published 21 Sep 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Most binary classifiers work by processing the input to produce a scalar response and comparing it to a threshold value. The various measures of classifier performance assume, explicitly or implicitly, probability distributions $P_s$ and $P_n$ of the response belonging to either class, probability distributions for the cost of each type of misclassification, and compute a performance score from the expected cost. In machine learning, classifier responses are obtained experimentally and performance scores are computed directly from them, without any assumptions on $P_s$ and $P_n$. Here, we argue that the omitted step of estimating theoretical distributions for $P_s$ and $P_n$ can be useful. In a biometric security example, we fit beta distributions to the responses of two classifiers, one based on logistic regression and one on ANNs, and use them to establish a categorisation into a small number of classes with different extremal behaviours at the ends of the ROC curves.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.