Papers
Topics
Authors
Recent
Search
2000 character limit reached

BSDAR: Beam Search Decoding with Attention Reward in Neural Keyphrase Generation

Published 17 Sep 2019 in cs.CL, cs.LG, and stat.ML | (1909.09485v2)

Abstract: This study mainly investigates two common decoding problems in neural keyphrase generation: sequence length bias and beam diversity. To tackle the problems, we introduce a beam search decoding strategy based on word-level and ngram-level reward function to constrain and refine Seq2Seq inference at test time. Results show that our simple proposal can overcome the algorithm bias to shorter and nearly identical sequences, resulting in a significant improvement of the decoding performance on generating keyphrases that are present and absent in source text.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.